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On phase separation in systems with continuous symmetry 
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$ Institute of Physics and Nuclear Engineering, Bucharest MG6, Romania 

Received 13 October 1982 

Abstract. It is proved that the interface in the isotropic D-vector model and its D +CO 

limit, both with Kac-Helfand interactions, is diffuse at all temperatures. The interface 
does not stabilise even when a pinning potential of Abraham type is accommodated. The 
magnetisation profile is explicitly calculated and the interface width is shown to be 
proportional to the sample thickness. 

1. Introduction 

Establishing the existence of non-translationally invariant Gibbs states describing 
sharp interfaces is an interesting and non-trivial problem in the theory of phase 
transitions. It is known that the ferromagnetic Ising model in two dimensions has no 
such states (Gallavotti 1972, Aizenman 1980), while for three dimensions and more 
the contrary is true (Dobrushin 1972, van Beijeren 1975). The absence of a sharp 
interface in the two-dimensional Ising model is due to the existence of large fluctuations 
in the system, which make the two phases-when brought into contact-spread one 
over the other to a thickness proportional to L1’2-E (L  is the interface length), resulting 
in zero magnetisation profile (Gallavotti 1972, Abraham and Reed 1976). On the 
other hand, the fluctuations could destabilise the interface in the three-dimensional 
Ising model and thus a roughening transition at TR< T, (3) has been conjectured 
(Burton et a1 1951, Weeks et a1 1973). However, the only models for which a 
roughening transition has been established rigorously are the SOS model (Frohlich 
and Spencer 1981) and models with a pinning potential of the sort studied by Abraham 
(1980). Thus, thermal fluctuations play an extremely important role in the phase 
separation and it is well known that they are controlled by the symmetry of the 
Hamiltonian as well as the lattice dimension and the range of the potential. For 
systems with continuous symmetry the fluctuations are expected to increase, and there 
is a phenomenological argument (Kittel 1971) according to which the interface should 
have a diverging width. We address ourselves in this paper to disproving the existence 
of a sharp interface for isotropic D-vector models (D  3 2 )  and their spherical limit. 
In order to suppress the fluctuations and thus favour the localisation of the interface, 
we considered interactions of Kac-Helfand (1963) type. Moreover, we try to pin the 
interface near one boundary, by lowering the coupling there, as done by Abraham 
(1980) for the two-dimensional Ising model. In spite of this we found that for all 
temperatures the interface is not localised, even near the distorted boundary; its width 
is of the order of the thickness of the sample on the top and bottom of which we 
imposed ‘mixed’ boundary conditions. In this respect we have explicitly calculated 
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2480 N Angelescu, M Bundaru and G Costache 

the magnetisation profile, thus taking full advantage of the simplification induced by 
the long-range character of the interactions. 

We think that our iesults substantiate the phenomenological prediction; for the 
non-existence of a sharp interface in a system where thermal fluctuations are damped 
as much as in the molecular field model should make very unlikely the appearance 
of a sharp interface in the corresponding system with short-range interactions. We 
would like also to note that the results obtained for the D-vector model hold even in 
the spherical limit and have been previously announced in a letter by Angelescu et 
a1 (1981a). 

The method we devised to prove the mentioned results relies on establishing a 
certain isomorphism (very likely holding only when long-range interactions are used) 
between the magnetisation profile of the D-vector model and that of a ‘D-vectorial 
spherical model’, The latter becomes in turn, provided appropriate limits are taken, 
the spherical model considered by Angelescu et a1 (1981a) and therefore there will 
be no need to study separately the spherical limit of the D-vector model. 

The isotropic D-vector model with Kac-Helfand interactions, which will be our 
concern, can be described as follows. Consider a slab consisting of M copies of a 
rectangular array A c Zd-’ of ‘spins’; the energy of a configuration IS,, E RD I \lSJ2 = 
D ;  T E A ,  1 s i s M }  is taken as 

M M 

~G! ,~({SI)  = -(yd-’/2) p(yI r  - f r I )  C J i l s i r s l r ~ -  D1l2h,Srr (1.1) 
r,r’sA 1.1 = 1 r E A  [ = I  

where p :Rd- ’  +R is a positive definite function such that j p ( x )  dx = 1, the scaling 
factor y > 0 controls the interaction range, 

JI,  = Tal ,  +8iI-,i,i, i , i = l ,  . . . ,  M ( T  2 2), (1.2) 

and D ‘ l2hz  E R D  is a homogeneous magnetic field acting on the ith layer. To describe 
the phase separation we shall eventually take all h ,  = 0, except for h and hM in terms 
of which we describe the boundary conditions. Namely, consider the spins in two 
extrema1 layers i = 0 and i = M + 1 fixed along two different directions e l  and e2 ,  both 
vectors in R D ;  moreover, allow for a different coupling Jo,l < 1 at one boundary, and 
thus hl and h M  are determined as hl = J o l e l ,  h M  = J M , M + l e Z ,  llhlil =JOl, l(hMII = 1. 

The model under consideration is the limit as yL0 of the model defined by the 
Hamiltonian (1.1) in the thermodyamic limit A +  CO, and it is an inhomogeneous mean 
field model with MD-vector order parameters. In particular, the y J 0  limit of the 
free energy per spin and per spin component exists by standard arguments (Thompson 
and Silver 1973) and is given by the absolute minimum with respect to {t}= 
(6, I 6, E RD, 1 G i s M )  of the function 

where 

(1.4) 

is the free energy of one spin in the external magnetic field D’/’x and has the properties 
(i)-(iv) listed in appendix 1. Taking into account that 9 has linear behaviour at infinity 
(Is’l< 1) and that the matrix J introduced by (1.2) is strictly positive definite, one 



On phase separation 2481 

concludes that f ( P ,  { h } ,  a )  attains its minimum at finite distance. Since 9 is an even 
function,f(B, { h } ,  e )  is differentiable on R D M  and hence its minimum points are among 
its stationary points, i.e. among the solutions of the system 

The minimum point {(} is intimately related to the magnetisation profile as shown 
in § 2. The techniques required for solving (1.5) are developed in § 2 and two 
appendices. The lemma on convex functions in appendix 2 seems to be new and 
therefore of independent interest. Section 3 contains the main result disproving the 
existence of the sharp interface in the D-vector model (D  >2),  while 0 4 indicates 
how to use this proof for the generalised spherical model considered in Angelescu et 
a1 (1981a). 

2. The layer magnetisations and the minimum point 

We have seen in 9: 1 that the model under consideration has a mean field character 
and thus solving it requires finding the absolute minimum of the function f ( P ,  { h } ,  e )  

defined by (1.3). We are, however, interested in the phase separation phenomenon, 
which requires studying the magnetisation profile across slab thickness. This is 
equivalent to the detailed characterisation of the point at which the absolute minimum 
o f f  is attained. To be more precise, suppose f(P, { h } ,  a )  attains the absolute minimum 
at a unique point ( ( { h } ) ,  where moreover the Hessian matrix a2f/a&;., atip is non- 
singular; then the layer magnetisations at the given P and h, 

are nothing but mi = e i ( { h } ) .  (( )by' and f$,) denote respectively the Gibbs state and 
free energy defined by the Hamiltonian (l.l).) Indeed, the minimum is attained on 
a solution of the system (1.5). Since the Hessian matrix is non-singular, for all {h ' }  
in a neighbourhood of {h} the system (1.5) has a unique solution ( ( { h ' } )  in the 
neighbourhood of ( ( { h } ) ,  which depends differentiably on {h ' }  and is the unique point 
of absolute minimum of f ( P ,  {h ' } ,  U ) .  (For the latter fact, remark that the minimum 
point is always in the compact lkil\s 1, i = 1,. . . ,M ,  as seen from (1.5).) Thus, 
f(@, {h'} ,  ( ( { h ' } ) )  is differentiable at {h ' }  = { h } .  Remembering that f$)(@, {h ' } )  are 
convex functions of {h'} and converge for A-, CO, yJ0 to f (p ,  {h'} ,  ( ( { h ' } ) ) ,  the assertion 
follows from Griffiths' theorem (Griffiths 1964). 

In proposition 2.1 we shall exhibit a convenient domain for { h }  on which the 
situation above takes place and suited for describing the phase separation. We start 
with a few definitions. Let us fix e E RD and define 

where 
define 

stands for the closure of 9. For { h * }  = (h? ,  . . . , h&) E with h?e = 0, we 

(2.3) 
M 

a i j h T + a i e , 1 ~ i ~ M , a i i ~ a B , a i ~ O  
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Proposition 2.1. Let { h } ~  ‘?le and /3 > O  be given. Then the absolute minimum of 
f ( p ,  { h } ,  a )  defined by (1.3) is attained at one and only one point, ( ( { h } ) .  Moreover: 

(i) ( ( { h } )  E $3: and is the unique solution in 9 y  of the system (1.5); 
(ii) ( ( { h } )  is differentiable on ‘?le; 
(iii) there exists lim ( ( { h } )  for { h } +  {h*} ,  { h }  E n %e. 

Proof. The proof proceeds in several steps: 
(a) the points of absolute minimum of f  are in $3?; 
(b) the system (1 .5)  has in 9 y  one and only one solution; 
(c) the Hessian matrix off is non-degenerate at ( =(({A}); 
(d) the existence of the limit in (iii). 
(a) For any { h }  E ‘?le and {e} E R M D  one can write 

h, = h :  +ale, 6, = 5: +ale ,  i = 1 , 2  , . . . ,  M, (2.4) 
where h 
by a, a E RM the vectors whose components are a,, a, respectively. 

e = (: * e = 0; obviously a, 3 0, 1 S i S M ,  and Xfl  a, > 0. Let us denote 

The function f(P,  { h } ,  {e})  defined by ( 1 . 3 )  can accordingly be written as 

M f ( &  { h } ,  (5)) =K({S’l)+g({h’}, {&’I; a, a) 
where 

the functions 4, ( x )  being introduced by the relations 

4, ( x )  =@-Is( p (K2 + x  2)1’2), KI = ll(J5’ + h 9 1  11, i = l , 2  , . . . ,  M. (2.5) 

The set { c $ ~ } ~ ~ ~ ~ ~  satisfies the properties (i)-(iv) considered in appendix 1 and hence 
the lemma stated there can be applied in order to see that inf, g ( { h ’ } ,  {(‘}; U ,  a) is 
realised at one and only one point a({(’}) > O .  Considering now a point {(*} at which 
f (P,  { h } ,  e )  attains the absolute minimum, it is obvious that inf, g ( { h ’ } ,  {[*‘}; a, a) is 
attained at a*, where {e*‘} and {a*} represent the decomposition of {t*}, cf (2.4). It 
follows that a* > 0, i.e. {(*} E $By. 

(b) We can restrict from now on the domain of all the functions entering the 
system(1.5) to theset2={(5E$3~15,~11(,11<1, l ~ i ~ ~ ) , a n d d e f i n e Y : 2 ~ R ~  by 

*I({(}) = P - 1 9 + ( t l ) / & ,  i = 1 , 2  ) . . . ,  M. ( 2 . 6 ~ )  

= .F’(PIl(J( +h) l l l ) ,  the system 

(2.66) 

where diag y denotes the M x M  diagonal matrix whose elements are the components 
of the vector y .  Now, if { ( * } ~ 3  satisfies (2.66), the matrix [diagW({e*})-J] 
transforms the strictly positive vector a* into the positive vector a f 0 (a* and a are 
defined by the decomposition (2.4));  thus [diag W({(*}) - J ]  is strictly positive definite 
(see e.g. Angelescu et a1 1979). Then (2.66) implies 

Taking into account that, for any solution 5, of (1.5), 
(1.5) is equivalent on 2 with 

[diag * ( {5} )  -J16 = h 

6:’ = [(diag W({(*}) - J ) - ’ h ] ? ,  i = l , 2  , . . . ,  M. (2.7) 
In order to prove that (2.66) has exactly one solution in 2, we shall try to find a 

change of variables under which (2.66) transforms into the extremum condition for 
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a certain strictly convex differentiable function. It will be useful to introduce the 
function G:  [0, l )+  R defined by 

G(xz) = p - ' s l - ' ( x ) / x  (2.8) 

*i({&l) = G((k?)),  i = 1 , 2  , . . . ,  M. (2.9) 

and remark that 

Keeping in mind the properties of 9 (listed in appendix 1 under the conditions (i)-(iv)), 
one can see that G is strictly increasing, continuous and transforms [0, 1) onto [ p - ' ,  CO). 

Besides, the function G is differentiable and (G-')'>O on ( p - ' ,  00). If H is a primitive 
of G-' i t  can be defined on [ p - ' ,  00) where moreover it is strictly convex. Let 9 be 
the open and convex set 

(2.10) 9 = { y  E RM Jdiag y - J  >0, yi > @ - I }  

and let Th : 9 + R be the function 

(2.11) 

where { h }  E Iu,. Making use of the fact that the mapping X -* X-' is convex on the 
set of strictly positive definite matrices (Lieb and Ruskai 1974), and recalling that H 
is strictly convex, it results that Th is strictly convex on 9. Hence the system 

aTh/ayi = G-'(yi) -[(diag y -J)-'h]f = 0, i = 1 , 2  , . . . ,  M, (2.12) 

has at most one solution on 9. 
Let {&*} be a solution of (2.66) and let y* =W({t*}). Then y*  is a stationary point 

of Th. Indeed, we have already seen that [diagW({[*})-J]>O. On the other hand 
qi({&*}) = G ( [ ? 2 )  3 G(cuT2) >p- '  and thus y* E 9. Taking into account that by the 
definition of y * ,  [F2 = G-' (y?)  and invoking (2.7), we find that y*  satisfies (2.12). 
But Th has only one stationary point and therefore {&*}E .\u-'(y*). Further, we shall 
consider another solution {e**} and note that necessarily W({t**}) = y * .  Then (2.6b) 
will provide t** = (diag y * - J ) - ' h  = (*. 

(c) In order to see that the Hessian matrix of f is non-degenerate at the point 
& = & ( { I t } )  one can consider its expression 

(2.13) 

where qp = (J& + h ) ,  and vp = Ilq,ll. The last term on the RHS of (2.13) defines a matrix 
of the form JAJ and since 9 ' ( x ) / x  > P ( x )  for x 3 0 it can be seen that A is positive 
definite and so is JAJ. It remains to check that the remaining part is strictly positive 
definite for & = & ( { h } ) .  But 9 ' (pvp) / vp  = 1/qp(&({h})) when 6 = & ( { h } )  and since 
diag W ( & ( { h } ) )  >J > 0, it  can be easily seen that indeed the first two terms in (2.13) 
define a strictly positive matrix. 

The proof of statement (ii) in proposition 2.1 has thus been completed. 
(d) We shall begin by noting that Th introduced by (2.11) is well defined on 9 for 

which 
(i.e. strictly convex on the set on which r h  is finite) and 

all { I t }  E RMD. We shall denote by T h  its lower semicontinuous extension to 
is strictly convex on 
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consequently it has only one point y ( { h } )  at which its absolute minimum is attained. 
When { h } +  {h*} ,  Th + uniformly on compacts in 9 and we can apply the lemma 
in appendix 2 to see that y ( { h } ) + y ( { h * } ) .  

Let us consider now { h * } ~ @ ~ ,  h*e=O,  l s i s M ,  and let e l , e 2 ,  . . . ,  e, be an 
orthonormal basis in the subspace of RD generated by h ?, 1 s i s M. If { h }  E %h* : 

P 
hi = h l  +aie, hl = 1 hI,e,, a i s O ,  l s i s M .  (2.14) 

, = 1  

If moreover { h }  E %h* n Qe, x E l  ai > 0. Note also that p s M. 

will satisfy 

[diag y ({h *}) - J]a * = 0,  

As y ( { h } )  converges when { h } + { h * } ,  { h } ~  8 h *  n %e, every limit point &* of ( ( { h } )  

[diag y ( { h * } ) - J ] t : ’  = h : ,  1 S F  S p ,  (2.15) 

(2.16) 

where h:  = ( h z :  1 si s M ) ;  6;‘ = X E z l  [:e,, a* realise the decomposition (2.14) of 
t*, while 6:’ = (6: : 1 zz i s M ) .  

The proof will consist in showing that (2.15) and (2.16) determine t* uniquely in 
terms of h *. If [diag y ( { h  *}) -J] > 0, then (2.15) provides (* uniquely. If, however, 
this matrix has the zero eigenvalue (necessarily simple with normalised eigenvector 
U > O ) ,  then p < M ,  and h,* * U = 0, 1 ~ I . L  s p .  Under these conditions, (2.15) shows 
that a* = qv (q a 0) and 6;’ = A,v + U,, with U, (U, U = 0) uniquely determined and 
linearly independent. To compute 7 and A,, use is made of (2.16) written in the form 

yI ( { h  *}) = G(a ? 2  + [ ? I 2  ), l s i s M ,  

G - ’ ( y i ( { h * } ) ) = ( q 2 +  f A:)u:+2 f A,ui,ui+ f U?,, 1 si s M .  (2.17) 

then (2.17) becomes a 

, = l  , = 1  , = I  

Summing over i and using u,u = 0, one gets T ’ + X ; = ~  A , ;  2 

linear system of rank p, which determines A,, 1 s F s p .  
This completes the proof of proposition 2.1. 

3. The properties of the magnetisation profile 

It has been shown so far that whenever the layer magnetic fields h i  are all lying in a 
half-space (conventionally fixed by e )  the Gibbs state of the considered physical system 
can be essentially determined. Thus we have seen that calculating the layer magnetisa- 
tions mi  when { h }  E Qe is equivalent to finding the unique solution in 9: of the system 
(1.5). Moreover, it has been shown that whenever a certain limiting procedure (closely 
resembling that through which the usual spontaneous magnetisation is defined) is 
adopted, one can determine the magnetisations mi even when { h }  lies on the boundary 
of OUe. The importance of this point stems from the fact that in the phase separation 
problem which is our concern here, we have to consider exactly the case when { h }  
lies on the boundary of OUe or, more specifically, when h l  and hM have opposite 
directions while the other magnetic fields are zero. The study of the phase separation 
in our model is thus reduced to the study of the properties of the unique solution in 

of the system (1.5) ( { h } ~  Qe), as well as to the study of this solution’s limit when 
{ h }  approaches in a certain way the boundary of Qe. More precisely, one has to take 
only h l  =to and hM =(M+l different from zero to account for the boundary conditions 
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as shown in 3: 1;  inverting 9‘ in (1.5) and introducing the function 

F ( x )  = p - 1 9 ’ - 1 ( x ) - m ,  (3.1) 
one is left with the system 

6 + 1  + t i - 1  = (Si/ti)F(ti), &€ge, l S i < M ,  (3.2) 
with the boundary conditions 

5 0 , 5 M + l  E a, 8 =&(so, eM+l) < T, 0 < 5 0 ,  TM + 1 s 1 , (3.3) 

where ti =11&11. From now on we shall study the properties of the unique solution of 
(3.2), (3.3) and of their limit as 8 + 7r (see 3: 2). 

Before proceeding any further some simple remarks will be in order. Thus, since 
ti * e > 0, 1 s i  S M ,  and 60 * e ,  & + I  - e 2 0, equation (3.2) implies 

F(6i) > 0, l S i S M .  (3.4) 

Therefore choosing as positive the sense of rotation of the vector so over &+l of 
angle less than 7, all the angles ei =&(Si, &+J will satisfy 

(3.5) 

Now, it is easy to see that (3.2) can be written as 

ti+l COS ei +ti-1 COS e i - l  = F ( [ , ) ,  
i = l , 2  ) . . . ,  M, 

tic1 sin =[,-I sin L 1 ,  
(3.6) 

whence 

&,+I& sin =&&sin eo=c, i = 1 , 2  , . . . ,  M. (3.7) 
Let us write down some properties which we shall need in what follows. 

(i) The quantity c defined in (3.7) satisfies the inequality 

o < ( M  + i ) ~  s e  < 7r. (3.8) 
( i i )  If the solution of (3.2) is such that 8, E [0,7r/2] for 0 s i sM,  then it satisfies 

(3.9) 

the relation 

E?+l - c 2 / t Y  + (5:-I - c 2 / t :  )1’2 = F(5, ) ,  i = 1 , 2  , . . . ,  M. 

(iii) Let 

g ( c ;  x )  = F ( x )  -2(x2  -c2/x2)1’2 (3.10) 
be defined on 0 c & S X  < 1. The function g(c,  . )  is convex on its domain. If 

Pc=((T+2)- l ,  (3.11) 
then for p s pc the equation g(c, 5) = 0 has only one solution 4 = c = 0; g(c, 8) is 
strictly positive otherwise. For p >pc the sign of the function g and its zeros cannot 
be simply expressed analytically and figures 1 and 2 will provide the missing analysis. 

(iv) Let { ~ 1 } 1 ~ 1 ~ ~  be a solution of (3.2) such that e,E[O, 7r/2], O S ~ S M .  If for 
1 s i o s M ,  tlo is a local minimum (i.e. 3 with tIU 2 &, then either g(c, tlU) > 0 
or g(c ,  6,J = 0 in which case = [,,,, O s  i G h 4  + 1.  If [ lo  is a local maximum (i.e. 

6 5,) then either g(c,  5,) < 0 or g(c, &,) = 0 in which case 6, = [,, 0 s i s M  + 1 .  
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(1 ipi 0 cp1 

Figure 1. The sign of the function g(c, 6) for Figure 2. The sign of the function g(c, 5 )  for p > T - ' .  

p E ( p c ,  T - ' ] .  

(3.12) 

where [(c), {(c) and a ( @ )  have been introduced in figures 1 and 2 (here ((c) is 
taken equal to zero when not defined). Now let p >pc  and the boundary conditions 
to and JM+l be fixed as specified in (3.3); then the solution of the system (3.2) satisfies, 
for M large enough (depending on p, to and [M+l), the relations 

(3.13) 

Indeed, let us introduce the continuous functions &,(t), & + l ( t )  E ge defined on t E [0, 11 
such that for any t E [0,11, 5 d t )  = t o ,  & + l ( f )  = & + I  and 60(0) =toe ,  S M + I ( O )  = 5 M + l e  
while e0(1) =to, &+l(l)=&+l. These functions have been chosen such that for any 
t E [0, 11 the system (3.2) with boundary conditions So(?), &+l(t)  has a unique solution 
{ & ( f ) } l S I S M  which depends continuously on t. Then cos & ( t )  depends continuously on 
t and so does t9,(t) ( O i ( t ) E I O ,  T)). Let us now choose M so large that the inequality 
min{a(p), (:, > T / ( M  + 1) is satisfied. Recalling (i), one will then have c ( t )  < 
min {a (@) ,  (i, [L+l}. Taking into account now that ((c) is continuous and ((0) = 0, 
we can find MO such that the inequalities c ( t )  < mii{a(P),  ( t ,  &+,} and z ( c ( t ) )  < 
min{Co, &+I} hold simultaneously for M a M 0 .  Consider from now on M i M o .  At 
t = 0 the angle 6 between 60(0) and &+l(O) is zero and (3.5) imposes @ ( O )  = 0, 
0 s  i S M ,  hence c(0) = 0 and as ((0) = 0 equation (3.13) is fulfilled. Suppose that 
there exists ~ O E  [0, 11 such that (3,13) is true; then using the above-mentioned con- 
tinuities, (3.13) will be satisfied in a certain neighbourhood in [0, 13 of to. Therefore 
the set of points t E [0, 11 for which (3.13) is obeyed is open in [0, 13. If on the other 
hand {gi(t)}lsisMdo not satisfy (3.13) for any t E [O, 11, then there exists to€  (0, 11 and 
1 G i o S M  such that for any t E [0, to),  { & ( f ) } l s i s M  obey the relations (3.13), while for 
t = t o  either 

(A) 

is valid, or 

(B) 

& ( t o )  3 &(to) = {(c ( t o ) ) ,  

& ( t o )  E EO, TP), 

(i(to) > $ ( c ( ~ o ) ) ,  i = 1 , 2  ) . . . )  M, 

i = 1 , 2  , . . . )  M, 

i = O , 1 ,  . . . ,  M ,  

i = o , l ,  . . . ,  M. & ( t o )  &,(to) = ~ / 2 ,  
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Suppose (A) holds; then since c ( to )<a (p )  we shall have S i ( t o ) ~ ~ i , , ( t ~ ) = S ( c ( t o ) ) L  a and (iv) can be applied, providing either g(c(to), &(to)) > 0 and hen& &,(to) > 
r(c( to))  > [ (c ( to ) )  contradicting (A), or &(to) =&,(to), i = 0, 1, . . . , M +  1, in which 
case f(c(jo)) =&,(to) = ,$o(ro) = to contradicting the choice of MO. Let us examine 
therefore the case - (B). Since M a M o ,  it results that [o,(M+l>a and 
5 i ( to )>S(c ( to ) )5Jc ( to ) ,  1 ~ i s M ;  hence & ( t o ) > J c ,  O s i s M + l ,  whence 
Si,,+l(fo)g(to) >c( to) .  But (B) implies c(td = &,+l( to)b( to) .  sin %,(to) = &,+l(to)5&J 
and thus we have arrived at a contradiction. 

(vi) Let p > O  and So and ( M + ~  be fixed. If { & } l s i s ~  is the solution of ( 3 . 2 ) ,  then 
for M large enough (depending on p, (0, [ M + ~ )  there exists io=io(M)E 
(0, 1, . . . , M + 1) such that ei = (io+i-iv is a monotonic function of / i  - iol. Indeed, for 
p E (0, pc] we shall have F(5)  2 25 and (3 .6)  leads to 

Si+l+t i - l  22ti5 i = l , 2  , . . . ,  M. (3.14) 

Now it can be easily seen that the solution cannot have a local maximum in ti,, 
1 s io S M. Then { & } O s i s M + l  is either a monotonic sequence (in which case io(M) = 0 
or M + 1) or it has a unique local minimum which is attained in io (or two neighbouring 
points), 1 s io sM,  in which case io(M) = io. Suppose that p >pc and take MO as given 
in (v). Then for M 3 M o  one has &>( (c ) ,  I S i S M ,  and Oi~[0,7r/2),  O C i s M .  
Therefore if for j0€{l ,  2 . . . , M }  the sequence { ( i } O s i s ~ + l  has a local minimum, one 
applies (iv) (ti > g ( c )  =- - J c, Oi E [0,7r/2)) to arrive at g(c, Q) > 0 whence 

Analogously if for ioE(1, 2 , .  . . , M }  the solution has a local maximum, (iv) can again 
be invoked to establish that 

t i c ,  < $(C 7 (3.15b) 

which together with ( 3 . 1 5 ~ )  shows that the sequence { S i } o G i s ~ + l  cannot have both a 
local minimum and maximum. Thus {Si}OGisM+l is either monotonic (in which case 
io(M) = 0 or M + 1) or it has a unique local minimum (or maximum) which is attained 
in io E {1,2, . . . , M } ;  in this case io(M) = io. 

Having established the properties (i)-(vi) we can pass to proving the following 
proposition. 

Proposition 3.1. Let p # p c  and { & } l s i s ~  be the solution of the system (3.2) with 
boundary conditions eo and S M + ~ .  Then there exist b > 0, B > 0 and MO all depending 
on p, [o ,  & + I  such that for M >MO 

I&) - 5; 1 < B i = o , l ,  . . . ,  M + l ,  

where di = min{i, M + 1 - i } .  

(3.1 6) 

Proof. Let M be so large that (vi) holds. We shall consider first that p E (0 ,  pc). In 
this case 

(3.17) -1  x (F(x)  -2x) 5Ff(O)-2  =u-l > o  forx 2 0  

and recalling ( 3 . 6 ) , F ( 5 i ) ~ S i + 1 + 5 i - l  ( l ~ i s M )  whence 

5i ~ ~ ( 5 i t l + S i - 1 - 2 5 i ) ,  i = l , 2  , . . . ,  M. (3.18) 
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Further, for i # io = io(M) given by (vi), (3 .18 )  leads to 

t i  <[0/(1 +w)Ii509 i s io - 1, 

ti S [ W / ( I  + w ) I ~ + ' - ~ s M + ~ ,  i a i o + l .  

For i = i o ,  (3.18) implies e b s  + 5 k - i ) [ w / ( 1 + 2 w ) ]  whence one gets 

(3 .19)  

& {[w/(l + ~ ) ] ' " 5 0 + [ 0 / ( 1  + 0 ) ] ~ + ~ - ~ ~ 5 . ~ + l } [ ( l  + w ) / ( l +  2 ~ ) ] .  (3 .20)  

Taking 6 = ln(1 + 1 / U ) ,  B = 2 max{to, &+'} and taking into account that $(CO = 0 for 
p E (0, pc) one obtains (3.16). 

Let us suppose now that p >pc.  Then the sequence { & } O s i G ~ + ~  has by property 
(vi) either only one local extremum in i o €  { 1 , 2 ,  , . . , M }  or it is monotonic. 

(a) If {ti}OsisM+l has a local minimum in io then tl =tio+i-io is monotonically 
increasing with / i  - iol .  Besides, (3 .15a)  will provide 

max{to, t,w+1}=5* sti > l ( c ~ ,  i = O , l ,  . . . ,  M + 1 .  (3 .21)  

Note now that for /3 > pc, F(c0 > 0 and recall that g(c ,  x )  is convex on x a 4,; denoting 
g'(c, F(c)) by l / G ( c )  > 0, it is easy to see that 

t -&I  c ; ( c ) g ( c ,  5) (3 .22)  

as soon as 5 s f ( c ) .  We apply this inequality to = ti. 

with Ii -iol; (3.156) will provide 
(b) If { [ i } O r i s M + l  has a local maximum in io then ti is monotonically decreasing 

min{to, t M + J  E 5* t i  <  CL i = o , 1 ,  . . . ,  M+1. (3 .23 )  

Recalling the choice of M in (vi) we shall have t* > JC and again the convexity 

i ( c ) - t - m g ( c , t )  (3 .24 )  

where ; ( c )  = -g(c,  5*)<f(c)-5J1 and 5 < l ( c ) .  The inequality (3 .24)  leads similarly, 
when applied to 6 = 6, to the inequality (3 .16) .  

(c) The case of monotonic { t i } ~ ~ i ~ ~ + l  can be easily reduced to (a) or (b) above. 

of g provides 

Proposition 3.2. Let { & } l s I s ~  be the solution of the system (3 .2 )  with fixed boundary 
conditions SO, &+l. Let p >pc,  4 =&(Si, 8 = & ( t o ,   EM+^) and di ,  b, B be the 
quantities introduced in proposition 3.1 .  Then there exist C > 0 and MO depending 
on p,  to, tM+l only, such that for M s M O  

/ei - e/(M + I ) /  < CM-' In M 

whenever i is such that di > ( l / b )  In BM, while otherwise 

(3 .25)  

e, = o ( i / ~ ) .  (3 .26 )  

Before proving this proposition we shall give without proof the following lemma. 

Lemma 3.3. Let cp i  E (0, ~ / 2 )  and 
{ 1 , 2 , .  . . , N }  such that 

a sin cpio s sin cpi s A sin vi(], 

cpi = cp. If there exist A > 0, a > 0 and i o €  

(3 .27 )  i = l , 2  , . . . . ,  N, 
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then 

( u ( p / A N ) [ l -  (A(p/aN)']''' G sin cpi s A q / a N ,  i = l , 2  , . . . ,  N. (3.28) 

Proof of proposition 3.2. If 0 = 0, (3.25) is trivially satisfied and therefore we will 
consider I3 E (0, T ) .  Let us choose M 1  such that for M aMl,  proposition 3.1 together 
with the properties (v), (vi) hold true. The property (vi) and (3.15) imply 

while (3.7) leads to 

sin 8i = ( t i U + 1 t i o / t i + 1 t i )  sin @io, 

( t * ( c ) / t * ( c ) ) '  sin eiossin ei s ( t * ( c ) / t * ( c ) ) '  sin 1 3 ~ ~ .  

i,ioE{O, 1 , .  . . , M } ,  (3.30) 

providing 

Thus we can apply the above lemma and find that there exist two positive constants 
C* and C* both M-independent such that 

c,[e/(M + i ) ]  s ei s c*[e / (M + l ) ] ,  i = o , l ,  . . . )  M. 

Now let SM={iIdia(l/b)lnBM,OsisM+l} and let h? be its cardinal. 
non-void for M large enough, and 

(M - h ? ) / ~  = o(M-' In M ) .  

Besides, recalling proposition 3.1, we shall have 

I t i  -[(col< 1 / ~  
whenever i E SM. Equations (3.30), (3.33) imply 

A-' sin Oio s sin ei s A sin e,,, 
A = ([(c) + ~ / M ) * ( [ ( c )  - l / M ) - ' .  

i, io E SM, 

But since f ( c )  - f ( O )  = O(c) and c s T / ( M  + l ) ,  one gets 

A = 1 + 0 ( 1 / M ) .  

For Oi, i E SM, lemma 3.3 provides 

A-'h?-'e'[l -(A'e'/h?)']ssin ei s e'A'h?-', i E SM, 
e'= ei. 

i e S M  

But 

whence 
o < 13 -e'= o(M-' In M ) .  

(3.31) 

SM is 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

Collecting now the estimations (3.32), (3.35), (3.37) and using the inequality (3.36) 
we obtain 

(3.38) ei = e/M + o(M-' In M ) ,  i E SM. 
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Proposirion 3.4. Let { S i } l s i s ~  be the solution of the system (3.2) with the boundary 
conditions fixed as follows: So, E Ge, f o  - e = 0 ,  S M + ~  e > 0. Then for p > p c  

lim & = f ( o ) [ ( f 0 / to )  cos ex + e  sin e x ]  (3.39) 
M - m . k l M + x  

proof. Note that f k  = & [ ( & / t o )  cos (z.,"=, e i ) + e  sin (zFeo e ~ ] .  Proposition 3.1 ensures 
that [ k  + f ( 0 )  whenever x E (0, 1) while proposition 3.2 enables us to assert that 

whence (3.39) results. 

4. Concluding remarks 

Our result, proposition 3.3, shows that looking at a region far away from both 
boundaries, the state is translationally invariant. The direction of the local order 
parameter is intermediate between the directions of the boundary fields and depends 
on how the thermodynamic limit is taken. Also, proposition 3.2 provides the following 
information on the behaviour near boundaries: 

Here mk (p ,  to) > 0 are the layer magnetisations of a semi-infinite system with boundary 
field to (as defined in Angelescu et a f  1981b) which approach exponentially fast the 
bulk spontaneous magnetisation. In other words, the layers at finite distance from 
one boundary, however small the coupling to it, do not feel the phase at the other 
boundary. Then we can conclude that an interface cannot be localised either deep in 
the bulk or near a boundary. The same conclusion holds also in the spherical limit 
of the model we considered here as announced in Angelescu et a1 (1981a). To see 
this it is sufficient to remark that the function whose minimum is sought in the spherical 
model is nothing but the limit when { h }  converges to the boundary of %e of the 
function Th(y) appearing here (see (2.11)) as an artifact of the proof of proposition 
2.1. Thus the D-vector model and the spherical one can both be solved in one stroke. 

The interface problem has been recently studied for short-range interactions by 
Abraham and Robert (1980) within the spherical model of Berlin and Kac (1952). 
They found as well that the interface is diffuse at all temperatures. However, the 
magnetisation profile there has some unphysical features, which led them to suggest 
that the model itself is inadequate for considering such 'non-translationally invariant' 
problems. Our generalised spherical model is free of this objection and indeed the 
profile we obtain is physically sound. 
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Appendix 1 

Let { # i } i = l , 2 , . . . , ~  be real functions defined on R satisfying for every 1 s i s M  the 
following conditions: 

6) 4i(x)=4i(-x) ,  4 i ( R ) C R +  and 4i E C3(R), 
(ii) d l ( x ) > O f o r x > O  andlimX,,q5((x)=l, 
(iii) 4 Y (x) > 0 for every x E R, 
(iv) q5Y(x)<Oforx>O. 

Let us now introduce the function gd: R M  +R defined by 

( A l . l )  

where J is an M x M strictly positive definite real matrix, positive (with respect to 
the componentwise order in R M )  and irreducible while h E RM, h # 0 and h L 0. Then: 

Lemma. The absolute minimum of the function .fFd on RM is attained in one and only 
one point x ' ~ '  satisfying x'">O. Moreover, if {di} i= l .~ . . . . ,~  is another set of functions 
satisfying the conditions (i)-(iv) and 4 :  LJ:, i = 1 , 2 ,  , , , , M,  then X ( ' ) Z = X ( ~ ) .  

Proof. Let c p :  R M  + R M  be a function defined by 

Now, since J is strictly positive definite and q5i have a linear behaviour at infinity (see 
(ii)) it results that gd attains its absolute minimum in at least one point which should 
be among the solutions of the system 

V,9d =Jx  -JTcp(X)  = 0. 

But J =JT and J- '  exists and hence this system can be brought into the form 

showing that the stationary points of 9d are the fixed points of cp. 
Let us note that the application cp has the following properties. 
(a) 4 is monotonically increasing on R M  (with respect to the order introduced 

above); its fixed points x satisfy lxil < 1 .  
(b) If x scp(x) (or x scp(x)) the sequnce cpo"(x) converges when n +CO to a fixed 

point of cp. 
(c) There exists n E N  such that (PO" ({x Ix 2 0, x f 0)) c {x Ix > 0). In particular if 

X L O ,  x # O  is a fixed point of cp thenx >O. 
(d) cp has one and only one fixed point in the set {x Ix 2 0, x # O}, 6 = limn+m (PO" (0). 

Indeed, the application x + Jx is increasing on R M  and q5 I' (x j > 0 for x E R, whence 
(a) results easily. 

(b) Note that cp(RM) = (-1, 1IM and account for (a) before. 
(c) Since J is positive and irreducible there exists n E N  large enough such that 

( J n ) a p  > 0, for any a, p E {I ,  2,  . . . . , M } .  Besides for y 30, y i  > O  and J k i  > 0 one has 
q k ( y ) > o .  
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(d) Account for 4 i being strictly concave on x 3 0 to arrive at 

vi (AX + (1  - A  )y) 3 A v i ( X )  + (1  - A )cPi (y )* 

with at least one strict inequality; here x, y 2 0, x f y and A E (0, 1). 

i = 1 , 2 , .  . . , M ,  (A1.4) 

Let x, y E {L /z 3 0 )  be two distinct fixed points of cp ; (c) then provides x, y > 0. As 
x # y  one can find A o &  [0,1] and an index i o €  { 1 , 2 , .  . . . , M }  such that 

z = A ~ : + ( I - A ~ ) ~ ~ O  and z io = A oxi0 + (I  - A o)yio = 0. 

With (A1.4) we shall haveq(z)  s z  and cp(z) # z .  Property (a) above leads tocpo"(z) S z  
for any n,  while (c) enables us to find n such that cp""(z)>O and thus z > O ,  which 
contradicts zio = 0. 

We are now prepared to prove the lemma. We shall begin by noting that if y is 
an arbitrary fixed point of cp then there exists a fixed point 6aO such that I y i l s & ,  
1 i i <M. Indeed, let y*  be the vector whose components y T  = Iyil. Then one has 
0 s y * i cp (y *) (note that h a 0). Hence by (b) cpon ( y  *) + 6, monotonically increasing, 
8 being a fixed point of c p ;  thus cpo"(y*) ~ 6 .  Further, let y be an arbitrary stationary 
point of ,F4. Then 

(A1.5) 

where 

G~(x )  = ( ~ / 2 ) 4 : - '  (x) -4i 04:-' (x) - (/3/2)hi~ (A1.6) 

which is strictly decreasing for x > O  and has the property Gi(x) 3 Gi(lxl). Using now 
(A1.5) we shall have 96(y)>94(y*)>94(&), where &=limn+mcp""Cy*). Thus the 
absolute minimum of ,F4 is attained at the only fixed point of cp, 6. 

Appendix 2 

Let D c R" be an open convex set and let f :  D + R be a continuous convex function. 
We shall denote by f the extension off at fi defined by 

(A2.1) 

Evidently f and f have the same lower bound and f is lower semicontinuous on D. 
Let us also note-that for every a >inf f the set a(?, a )  = {x E fi I f ( x )  s a }  is convex 
and closed (Rockafellar 1970); we shall also remark that f attains its absolute 
minimum on the set Q(f) = na,inff Q(f, a )  = {x E b If(x) = inf f}. 

Let V be the set of all continuous convex functrons on D and Vo the set of all 
functionsfe V for which Q(f) is non-void and bounded. Then the following continuity 
property holds. 

Lemma. Let f e  Vo. Then for every E > O  there exists 77 > O  and a compact K C D  
such that for every g E V which satisfies 

SUP lf(x)-g(x)l<77 
x c K  
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one has g E V0 and 

Q(g)c{x  Id(x, Q(f ) )<&) ,  linff-inf gl<E, 

where d ( x ,  Q(f)) is the distance between x and Q(f). 
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(A2.2) 

Proof. Let f~ WO and E > 0 be given; without restricting the generality one can suppose 
inf f = 0. Let V be the set 

(A2.3) 

Since Q ( f )  is non-void, convex and compact, it results that V is convex and open 
and v compact, Moreover, as f is lower semicontinuous on D it can be asserted 
(Rockafellar 1970) that there is S > 0 such that 

V = {x I d ( x ,  Q(f)) < E }. 

Q(f, 6 )  = V. 
Let us choose S f  E (0,s)  with S' < ~ / 4 ;  taking into account (A2.1) we find that there 
exists xo E D such that 

f (xo) = 6'. (A2.4) 

Let us consider now the set 

K6 = { z  Ifk) = 6, z E [XO, Y I, Y E (D\ V )  n v}. (A2.5) 

Then the following properties hold: 
(i) K , c  V n D ,  
(ii) for every y E D\V, [XO, y ]  n Ka # 0, 
(iii) Ka is a compact set. 

Indeed: 
(i) Obviously Ka c Q(f, S )  c V. On the other hand if z E Ks then z E [XO, y ]  with 

y ED\ V; but y E D\ V implies f ( y )  > S and since xo E D then [xo, y ]  c D and therefore 

(ii) Let y ED\ V; as xo E V n D and V is open and convex one has [xO, y ]  n V = 
[XO, Y I I ,  [XO, y l n  @\V) = [YI ,  y1, where y1 E 

Evidently f 1 [YI,  y ]  > S and therefore supposing that [xo, y ]  n K,  = 0 implies 
necessarily that S a f ( [ x o ,  yl ) ) .  But since f is continuous on D and [xo, y1) c D, then 
f ( [ x o ,  y is an interval and since f ( x o )  = 6' < S we have f I [xo, y < 6. Recalling that 
f is lower semicontinuous, we have 

K, c D. 

n @\V). 

_f(y1)= lim f ( z ) s S  
Z - Y l  

E[XO.Y 11 

which contradicts f ( y l )  > S. Hence [xo, y ] n K ,  f 0. 
(iii) We already know that K ,  is a bounded set. It remains therefore to show that 

Ka is a closed set. Let us consider a convergent sequence {z,} c K,, -5, + z .  As zn E Ka 
there exist y, E (O\ V )  n 

Z, = ( I - A , ) ~ o + h , y , .  (A2.6) 

is a compact set and hence there exists a subsequence (y,,} of (y,} 

IZ", -xol =An, lYn ,  -xo / .  (A2.7) 

and A,  E [ 0 , 1 ]  such that 

But (D\V)n 
converging to y E @\V) n v. Equation (A2.6) provides that 
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Let us remark now that limk lynk -xoI > 0 (otherwise, xo = y which is impossible since 
xo E V while y E D \ V ) ,  which in turn implies that A,, is convergent. Let A = limk An,. 
Then equation (A2.6) provides that z = (1  - A ) x o + A y ,  with A E [0, 11, y E (D\V) n V. 
But since (2,) c K6 c Q(f, 8) it results that z E Q(f, S )  n V and since z E [XO, y], we 
have z E [xo, y ] n V = [xO, y ) c D. Then z E D  and therefore is a continuity point of f 
which leads to 

f ( z )  = limf(z,,,) = S 
k 

implying that z E K6. Hence the set K6 is closed. 
Let us proceed further and consider for a > 1 the set 

~ = { z j z  = X ~ + ~ - ~ ~ X - X ~ ) , X E  Vnd}. (A2.8) 

Obviously K c V c D and for a + 1, K is getting closer to V nD ; since the compact 
K6 c V nD there will exist a > 1, which can be safely taken less than 2 such that 
K6 c K c V nD. Consider now g E %‘ such that sup,,&(x) - g ( x ) l <  77 with 77 <:E, 

i(S -8‘) and remark that for x E D \ V ,  x = A x 1  - (A - l)xo with X I E  K6 cK and A > 1.  
Therefore 

g ( x ) 3 A g ( x i ) - ( A  - l)g(xo) 

* A ( f ( x i ) - V ) - ( A  - l)(f(xo) +q) = S  - 7 7  + ( A  - 1)(S -8’-277). 

Since S - 6’ > 277 we have 

g(x) > S  -77 > t ( S  +a’). (A2.9) 

On the other hand 

g ( x O ) s f ( X O ) + q  = a ’ + ?  < & + S f )  (A2.10) 

which together with (A2.9) implies that inf g is attained on d n V and therefore g E V0 
and Q ( g ) c  V n d .  

We shall consider now that x E v nd and with (A2.8) one can write 

x =a2 - (a  - l)xo, z ,  xo E K, 

and a E (1,2) as previously fixed. Using the convexity of g we obtain 

d x )  3 a d z )  -(a - l ) g ( x o )  L a  (f(z 1 - 77) - (a - l)(f(xo) + 77) 
and since f ( z )  3 inf f = 0 and a E (1,2) we get 

g (x ) 2 -377 - 8‘ 2 -.E * 

As Q ( g )  c v nD we have 

inf g 3 - E .  

On the other hand g(xo) s f ( x o )  + 7 = S ’ +  77 s $E +;E < E  whence 

inf g S E  

which together with (A2.11) implies 

Jinf g J  s E ,  

whence one gets the last part of our lemma. 

(A2.11) 

(A2.12) 
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Note added in proof. The information obtained in propositions 3.1 and 3.2 about the magnetisation profile 
allows the calculation of the helicity modulus (Fisher et a1 1973), defined as 

where fs,M(p) is the free energy for the slab with M layers under boundary conditions lo, & + l ,  with 
@ =&(tu, Remarking that for the solution of (3.2), c = i3t(cO2/(M + l)+O[(ln M ) / ( M  + 1)2] and that 
~ ( O J  = &(@) = the bulk spontaneous magnetisation of the model, one obtains Y ( p )  = &(p)' .  
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